A Research Agenda for Improving Reconfigurable Computing Design Productivity

http://www.chrec.org/ftsw/

Mike Wirthlin Brigham Young University

The views, opinions, and/or findings contained in this presentation are those of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

This work was supported by the Defense Advanced Research Projects Agency - Information Processing Techniques Office (DARPA/IPTO) under contracts FA8650-07-C-7745 and FA8650-07-1-7742 and administered by AFRL/RYDI.

Slide 1

The cost of creating FPGA designs in both highperformance computing and embedded environments limits the ability of DoD to exploit FPGA and reconfigurable technology.

- DARPA interested in understanding and addressing this topic
 - Studies (BYU/VT, UF/GWU, and others)
 - SBIR tool efforts
 - Possible program?

This study will investigate the <u>full</u> FPGA tool flow and identify potential solutions in <u>all</u> stages of the tool flow to provide <u>revolutionary</u> improvements in design productivity

Objectives:

- 1. Summarize the state of existing FPGA design tools,
- 2. Identify the limitations of the existing tool flows,
- 3. Identify techniques to address these limitations,
- 4. Estimate the impact of the identified techniques, and
- 5. Recommend a strategy for future research and investment.

Technology	Year	LUTs	DSPs	Memory
65 nm	2007	340 k	500	10 Mbit
45 nm	2010	700 k	1000	21 MBit
32 nm	2013	1,400 k	2000	42 MBit
22 nm	2016	2,900 k	4300	89 MBit

- Coarser granularity objects & hard IP
- Adopt highest-speed I/O standards
- Increasingly heterogeneous (similar to multi-core)

Future FPGA Trends

Technology	
65 nm	2
45 nm	2
32 nm	2
22 nm	2

- Coarser granularity
- 65 nm
 (2007)
 XemeDSP Slice
 340K LUTS
 500 DSPs
 10Mb mem

econfigurable Computin

Design Productivity Gap

- Density of FPGAs growing rapidly (Moore's law)
- Improvements in design productivity are modest
- Problem: growing gap between FPGA density and design productivity

How are we going to design future FPGAs?

State of the Art Design Flow

State of the Art Design Flow

NSF Center for High-Performance Reconfigurable Computing

Challenges and Limitations

- Formulation
 - Few tools to support architecture exploration
 - Limited support for predictive analysis
- Design
 - Require understanding of circuit structures and timing
 - Limited support for high-level language constructs
- Translation
 - PAR times long and unpredictable
 - Difficult to integrate cores
- Execution
 - Limited visibility into FPGA state
 - Runtime systems for FPGAs lacking
 - Lack of support for multi-FPGA

FPGA Use Models

ASIC Replacement

- General purpose digital circuits
- Low-level RTL design
 - Clock-cycle accurate
 - Carefully manage resources
- Goal: minimize cost

FPGA Use Models

ASIC Replacement

- General purpose digital circuits
- Low-level RTL design
 - Clock-cycle accurate
 - Carefully manage resources
- Goal: minimize cost

Configurable Computing

- Application-specific computing
- Fixed topology and I/O interfaces
- Higher level design (focus on behavior)
- Goal: maximize performance

FPGA Use Models

ASIC Replacement

- General purpose digital circuits
- Low-level RTL design
 - Clock-cycle accurate
 - Carefully manage resources
- Goal: minimize cost

Configurable Computing

- Application-specific computing
- Fixed topology and I/O interfaces
- Higher level design (focus on behavior)
- Goal: maximize performance

This study will address the Configurable Computing Use Model

Research Agenda

Projected productivity impact on order of 20×

I. Formulation: Abstract Modeling & Exploration (1)

Research Thrusts

- Abstract app modeling for strategic exploration
 - Not coding in traditional sense
 - Abstraction layer above Design amenable to domain scientists
- Parallel algorithm exploration
 - Application modeling, expressing deep & wide parallelism
 - Graphical, textual, or hybrid modeling techniques
 - Pattern-based exploration for alg. modeling & mappings
- Parallel architecture exploration
 - Abstract platform models for target explorations & mappings
 - Arch. resources, I/O bandwidths, alg. mapping options
 - Iterative algorithm / architectural exploration for viable combinations, tradeoffs
- High-level performance and resource prediction
 - Supports tradeoff analysis (alg., arch., both)
 - Memory hierarchy, data locality, bottlenecks
 - Analytical, simulative, or combo
- Resurgence of concepts in numerical analysis
 - Accuracy vs. resource tradeoffs
 - Concepts, methods, & tools to aid arithmetic precision analysis
- Feeder to Design stage
 - Must bridge into Design, or else users will not adopt
 - Patterns, templates, code generation, libraries

I. Formulation: Abstract Modeling & Exploration (2)

Qualitative Impact of Formulation Innovations

- Management of increasing complexity
 - Ideal level for exploring structures, mappings, tradeoffs
 - Major (strategic) decisions prior to coding, manage complexity
 - Increasingly important in MC: fixed or heterogeneous or reconfigurable
 - Basis for achieving semi-automation
- Major reductions in DTE costs
 - Reduction in Design time
 - Transitions from F to D (automation, patterns, templates, code)
 - Reduction in DTE frequency
 - Better strategic choices in Formulation mean less design & re-design
- Significant utility gain for non-experts
 - Methodologies amenable to domain scientists & system designers; shorter learning curve
- Maximum impact on overall productivity
- Formulation concepts & methods potentially applicable to heterogeneous, many-core world

II. Design: Concepts, Languages, Patterns

Research Thrusts

- System-level design languages & methods
 - Constructs for explicit deep & wide parallelism, & locality
 - Integrated hardware-software co-design methodologies for automated mappings on target architecture
 - Multi-paradigm & multi-level design abstractions for efficiency & productivity tradeoffs
 - Incremental and iterative design refinements for debugging & optimizations
 - High-level synthesis to produce better inputs for PAR tools
- Reusability & portability
 - Pattern-based design methodologies & core libraries to maximize reusability & portability
 - Standard FPGA system & sub-system interfaces for better design portability

Qualitative Impact of Design Innovations

- Higher user productivity due to intuitive development methods
 - User-friendly high-level languages to reduce learning curve for non-experts
- Considerable reductions in Design time & DTE frequency
- Reusable and portable designs significantly improve productivity

III. Translation: Algs & Target Architectures

Research Thrusts

econfigurable Computing

- Translation algorithm innovations
 - Parallel PAR tools to expedite Translation using parallel architectures
 - Region-based PAR tools to reduce routing complexity
 - Improved PAR techniques to tradeoff routing effort & execution times
- Device architecture innovations
 - CAD-amenable architectures to improve quality of Translation tools
 - Coarse-grained RC architectures as better Translation targets
 - Hierarchical routing with tool emphasis on locality & pipelining
- Architecture-aware Translation
 - Outside of scope for SIRCA (see DARPA AACE program)
 - Challenges abound for FMC devices, premature for RMC

Qualitative Impact of Translation Innovations

- Reduction in Translation times, but not frequency
- Common misconception: Translation cost is all from PAR delay
 - T_{time} reduction beneficial, but often overlooked yet equal is T_{freq} (development cost of T stage = $C_T = T_{\text{time}}$ T_{freq})
 - T_{freq} reduction achieved via innovations in **F**, **D**, and **E** phases

Note: emphasis here should be upon revolutionary breakthroughs, not incremental vendor advances in PAR

IV. Execution: Runtime Analysis & Services

Research Thrusts

- Runtime debug & verification
 - Runtime, system-level, in-circuit debug methods & tools for design validation
- Post-mortem analysis & optimization
 - Runtime, post-mortem analysis methods & tools for critical optimization
 - Feedback to Formulation, Design, & Translation phases for analyzing bottlenecks
- Runtime services

Reconfigurable Computing

- Services to support varied mission scenarios such as FT, RT, RTR, PR, SoC; e.g. checkpoint & heartbeat services, PR configuration manager
- Load balancing & job scheduling for multi-node systems
- Secure configuration mechanisms for sensitive missions

Qualitative Impact of Execution Innovations

- Superior Execution tools can provide significant development cost savings, reduction of debug time & DTE frequency
- Optimization & bottleneck elimination can also result in critical utility gains, thus increasing productivity

econfigurable Computin

Substantially increase the amount of design reuse at all levels of the design flow

- Library reuse standards
 - Establish standards for cores
 - Create reusable core libraries
- Dual Layer Compilation
 - Compile to common machine model
 - Architecture specific compilation
- Interface Synthesis
 - Simplify integration of cores into system
 - Abstract details of core from designer

Slide 20

Abstraction

Reduce the amount of detail required to specify computations by raising design abstractions

- Leverage emerging concurrent models of computation
 - Multi-core programming models
 - MPP programming models
- Remove circuit-level details
 - Programmers do not need clocks
 - Automate resource allocation
- Support multi-FPGA synthesis
 - Automatic partitioning

Turns-per-Day

Increase the ease of design debug and deployment by providing many more "turns per day"

- Platform services
 - Debug and monitoring support
 - Insert debug circuits
- Firmware
 - Support for standard services
 - Reuse placement & routing
- High-level abstraction debug
 - Debug HLL in hardware

Potential Impact: ~25x

	Abstraction: 2x DP improvement
	Increase CC/ILOC by 2x

 $DesignProductivity = \frac{CC \times TPD}{ILOC_0 \times [(1-R) + (O \times R)] \times \frac{Turns}{ILOC}}$

Reuse: 4x DP improvement (R=0.8, O=0.10)

Verification: 3x DP improvement Increase TPD by 50% Decrease Turns by 2x

Impact Summary

Innovations ranked based upon results of projected impact analysis

- Formulation innovations have highest potential for 1. impact on productivity
 - Potential to dramatically increase user base for FPGAs
 - Strategic exploration concepts central to RC, but also potentially applicable to FMC world
- 2. Design innovations without Formulation innovations do increase overall productivity
 - Formulation + Design innovations likely to generate maximum impact
- 3. Execution innovations important for providing critical runtime information
 - Reduction in optimization, debug, & verification costs
- Translation time improvements beneficial, but 4. less impactful on overall productivity model
 - But, intangible benefits may also result (human factors)
- Cumulative impact of integrated FDTE methodology on overall productivity
 - Theoretical max prod: As DTE \rightarrow 0, total cost approaches learning curve + Formulation cost
 - Conservative: 12× productivity improvement
 - Optimistic: 16× productivity improvement

** Productivity is unlike speedup; 12× reduction in cost (C) would be truly outstanding (e.g. man-year effort reduced to man-month) **

Projections from FDTE Innovations

** Gains even more pronounced when utility (U) from RC is included **

Questions?

Visit the CHREC booth for more information

